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Introduction

Consider a linear nonminimal phase plant given as follows:

= Ax + Bu

y = Cx

The goals of this research effort are:

(1)

(2)

1. To develop an algorithm for offline stabilization of linear and nonlinear plants
with known parameters by using a neural network controller.

2. The results of stabilization procedure must be rigorously tested mathematically.

3. The obtained controller should become linear controller which also stabilizes the

plant when linearization of the neural network is performed.

4. Tracking of step inputs must be achieved.

5. Provide unified treatment of plant and controller dynamics in terms of differential
equations rather than considering a hybrid discrete-continuous system.

To stabilize (1) we propose a neural network described by the following equations:

(3)

where the output of the net o is given by o = wTy A- wTz and u = o + re f, where ref
is the reference input.

Definition of asymptotic stability of nonlinear system. Consider a plant-controller

dynamical system given above in the phase space/_ with state vector (x T, zT) T. Then
this controller stabilizes the plant with the region of stability U, 0 E U C R = if and only
if disconnecting external input ref results in convergence of any trajectory of combined
plant-controller state space to 0.

The neural network consists of three layers: input layer, inner layer and the out-
put layer with 5,4 and 2 nodes in these layers respectively. Sigmoid functions in
the inner layers are chosen to be hyperbolic tangent functions y(x) = (exp(x)-

ezp(-z))/(ezp(x) + exp(-x)). The layers are fully interconnected resulting in 28
weights. Additional weights are 4 weights for 2 two-dimensional vectors wl, w2 in the
output o above totalling 32 unknown weights. The 5 × 4 matrix of weights connecting
input to inner layer is denoted by E and the 4 x 2 matrix of weights connecting inner
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layer to the output layer is denoted by D. The total 32-dimensional weight vector is
denoted by r.

To fully explain our approach we need to formulate two well known results about
Lyapunov functions:

Result A: Let 5: = p(x), x E R" be a differential equation on a bounded open set
U C R _ and let p(0) = 0 E U. Let h(x) be acontinuous function on U such that

h(x) > 0 on V and h(0) = 0. Let < _Th(x),p(x) >< 0forallx • U, wherevh(x)
denotes gradient of h and <, > denotes the scalar product in R _. Then every trajectory
of our differential equation with initial condition m U converges to 0 as t _ oo.

Result B: All the eigenvalues of matrix T have negative real parts if and only if for

any given positive definite symmetric matrix N the matrix equation TTM +MT = -N
has a unique positive definite symmetric solution M.

The basic underlying idea of the solution of stabilization problem using neural network
controller is as follows: find a 6 × 6 matrix M and the set of weights r with dimension

of r being 32 such that h(v) = vTMv is the Lyapunov function in a neighborhood of 0

in a six dimensional state-space with the state vector (_). This would require that the

time derivative of h, _t(v) = vT(TTM + MT)v be a negative function on U where T is

the Jacobian of the overall plant-controller dynamical system. Function _t(x) depends
altogether on 68 parameters: on vector r and on vector g which is such a vector that

when arranged in a 6 x 6 matrix G will satisfy the equation GG T = M.

Our approach then is to start with random vector r and random vector g and form
a gradient descent equation

= -_Oh/Oq (4)

where q is the six-dimensional state vector q = z , a is not a constant but a vector

and in the formula above we consider the Hadamard product of _ with the partial

derivative of h by q. Also, a changes with time as the function h decreases.

While simulating the gradient descent equation we modify vectors r and g until

function h above is negative on a neighborhood of 0.

To check that we have designed the stabilizing controller with the linear plant we

need only to check that the egenvalues of the matrix MT + TTM are all negative.
However, in this section we extend our method to nonlinear plants and show how to
verify the stability in this case.
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Algorithm for stabilization of nonlinear plants:

.

.

Stabilization of Jacobian at the equilibrium is done first and proceeds as in the
case of linear plants. (Here we assume that the nonlinear plant has an equilibrium

and we stabilize around this equilibrium).

After obtaining some open region of stability around the equilibrium as in part
1 we select points at random Iying on concentric expanding spheres around this
stable equilibrium and adjust the _veights of neural net to achieve the negativity
of the derivative of Lyapunov function. Lyapunov function M is also given as a
neural net.

Verification of stability of a given region for the given nonlinear plant and stabilizing
neural net: Given the candiaate for stability region U and the Lyapunov function h
we can derive the upper bound K on the partial derivatives of h with respect to state
vector:

c3tt/c3w < g (5)

where w is the arbitrary point in U. If for every point w E U we have h(w) < -fl, fl > 0

then, as follows from the Taylor's formula for multivariable functions, in the open ball

of of radius _/K the derivative h is negative. If we cover U with the balls of radius

_/K then h is negative on U insuring stability. This can also give us an estimate on
the number of training points to achieve the stability.

Definition. Given a differential equation _ = f(x), x E R '_ a point x0 is an equilibrium

of order k, k < n if f(xo) = 0 and the Jacobian Of(xo)/Ox at x0 is nondegenerate and
has exactly k eigenvalues with positive real parts. By a stable manifold of x0 we mean
a union of all trajectories converging to x0 as t _ ¢x_.

Definition. Consider the dynamical system tb = f(w) described by a neural network-
plant differential equations and having the Lyapunov function h. Let U be the maximal
set such that U is connected, contains the origin of the state-space, h is positive on U

and h is negative on U. Then U is called the maximal stability region.

Theorem. In the notations of previous two definions let tb = f(w) be a differential
equation describing plant-neural network dynamical system and let U be the maximal
stability region for Lyapunov function h. Then

1. If U is bounded then on the boundary of U there are equilibria of all orders
k,O<k<n.
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2. Under generic assumptions the boundary of U is the union of stable manifolds of
equilibrium points lying on the boundary.

3. Every trajectory" on the boundary of U converges to an equilibrium point as
t _ c¢. IfU is oounded the the same is true for t _ -oo.

4. The point on the boundary where the minimum of h is achieved is an equilibrium
point of order 1.

Conclusions

We have successfully demonstrated how the problem of stabilization of plants can be
reduced to a problem of approximation of functions. Neural networks have been shown
to have approximatingandinterpolating properties. This approach is good for linear
and nonlinear plants. -Software has been generated to demonstrate this approach.

Directions for further research:

1. Generate faster software to utilize parallel processing features.

2. Improve algorithms to increase success rate for ill-conditioned plants such as the
one considered. The convergence is successful for a random linear plant all the
time.

3. Generate efficient software for nonlinear plants stabilization and tracking.

4. Study regions of stability and phase portraits of plant-neural controller and gra-
dient descent learning differential equations.

5. Develop techniques for pole placing of linearized version of plant-neural controller
system and of shaping the stability region.
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